Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed). Academic Press, London.
Matthew, C.J., Bjorkman, M.K., David, A.M., Saito and P.J. Zehr, (2008). Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol Oceanogr, 53: 63-77.
Gonzalez, L.J., Rodelas, B., Pozo, C., Salmeron, V., Martinez, M.V. and V. Salmeron, (2005). Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids, 28: 363-367.
Wani, S.A., Chand, S. and T. Ali, (2013). Potential Use of Azotobacter chroococcum in crop production: an overview. Curr Agri Res J, 1: 35–38.
Handbook of microbial biofertilizers / M. K. Rai, editor (2006). Food Products Press, an imprint of The Haworth Press, Inc., 10, Alice Street, Binghamton, NY 13904-1580.
Okon, Y. (1985). Azospirillum as a potential inoculant for agriculture. Trends Biotechnol, 3: 223-228.
Schwencke, J. and Carù, M. (2001). Advances in actinorhizal symbiosis: Host plant-Frankia interactions, biology, and applications in arid land reclamation: a review. Arid Land Res Manage, 15: 285-327.
Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Franche, C., Narayanan, K. and L. Laplaze, (2013). Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed Res Int, 2013, 9 pages.
Hashem, M.A. (2001). Problems and prospects of cyanobacterial biofertilizer for rice cultivation. Austral J Plant Physiol, 28: 881-888.
Pabby, A., Prasanna, R. and P. Singh, (2013). Azolla-Anabaena symbiosis –from traditional agriculture to biotechnology. Ind J Biotechnol, 2: 26-37.
Nisha, K., Padma Devi, S.N., Vasandha, S and K. Sunitha Kumari, (2014). Role of phosphorous solubilizing microorganisms to eradicate P - deficiency in plants: a review. Int J Sci Res Publications, 4(7).
Gaur, A.C. and S. Gaind, (1999). Phosphate solubilizing microorganisms - an overview. Agromicrobes. Current trends in life sciences, Today and tomorrows publishers, New Delhi, India, 23:151-164.
Ahmed, N., Shahab, S. (2009). Phosphate solubilization: their mechanism genetics and application. Internet J Microbiol., 9(1).
Blake, L., Mercik, S., Koerschens, M., Moskal, S., Poulton, P.R., Goulding, K.W.T., Weigel, A. and D.S. Powlson, (2000). Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr Cycl Agroecosyst., 56:263–275.
Quiquampoix, H. and D. Mousain, (2005). Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossardand E, Baldwin DS (eds). Organic phosphorus in the environment. CAB International, Wallingford, UK, pp. 89–112.
Lambers, H., Finnegan, P.M., Laliberte, E., Pearse, S.J., Ryan, M.H., Shane, M.W. and E.J. Veneklaas, (2011). Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: Are there lessons to be learned for future crops? Plant Physiol., 156: 1058–1066.
Jakobsen I., Leggett M.E. and A.E. Richardson, (2005). Rhizosphere microorganisms and plant phosphorus uptake. In: Sims J.T., Sharpley A.N. (eds). Phosphorus, agriculture and the environment. Am Soc Agronomy, Madison, pp. 437–494.
Boulter, J.I., Trevors, J.T. and G.J. Boland, (2002). Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression. World J Microbiol Biotechnol. 18: 661-671.
Parikh, S.J. and B.R James, (2012). Soil: the foundation of agriculture. Nature Education Knowledge, 3 (10): 2.
Timm, C.M., Campbell, A.G., Utturkar, S.M., Jun, S.R., Parales, R.E., Tan, W.A., et al., (2015). Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment. Front Microbiol. 6: 1118.
Zinati, G. (2015). Compost in 20th century: A tool to control plant deseases in nursery and vegetable crops.
Pal, K.K. and B. McSpadden Gardener (2006). Biological control of plant pathogens. The Plant Health Instructor, pp. 1-25.
Bashan, Y., (1998). Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Advances, 16(4): 729.
Bertrand, H., Plassard, C., Pinochet, X., Touraine, B., Normand, P. and J.C. Cleyet-Marel, (2000). Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol. 46: 229–236.
The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsi-ble for any use which may be made of the information contained therein.